Loading
Error: Cannot Load Popup Box
Skip to hit list
Adjust your hit list
Further result pages
Mobile

A
A
A

A

English
Deutsch
Français
Español
Polski
Ελληνικά
Українська
中文
 Logged in as

Log Out

Login
BASIC
SEARCH
ADVANCED
SEARCH
HELP
BROWSING
SEARCH
HISTORY
Your search
Search For:
Entire Document
Title
Author
Subject
Boost open access documents
Find
Linguistics tools
Verbatim search
Additional word forms
Multilingual synonyms
Statistics
11 hits
in 72,045,933 documents
in 0.26 seconds
Please leave the following field blank:
Home
»
Search: T. Nittner
Hit List
Hit list
1.
The Classical Linear Regression Model with one Incomplete Binary Variable
Open Access
Title:
The Classical Linear Regression Model with one Incomplete Binary Variable
Author:
H. Toutenburg
;
T. Nittner
H. Toutenburg
;
T. Nittner
Minimize authors
Description:
We present three different methods based on the conditional mean imputation when binary explanatory variables are incomplete. Apart from the single imputation and multiple imputation especially the socalled pi imputation is presented as a new procedure. Seven procedures are compared in a simulation experiment when missing data are confined to o...
We present three different methods based on the conditional mean imputation when binary explanatory variables are incomplete. Apart from the single imputation and multiple imputation especially the socalled pi imputation is presented as a new procedure. Seven procedures are compared in a simulation experiment when missing data are confined to one independent binary variable: complete case analysis, zero order regression, categorical zero order regression, pi imputation, single imputation, multiple imputation, modified first order regression. After a brief theoretical description of the simulation experiment, MSEratio, variance and bias are used to illustrate differences within and between the approaches. Key words: binary variables; imputation; incomplete data; logistic regression; simulation experiment; 1 Introduction Statistical analysis with incomplete data is a common problem in practice. The linear regression as a main tool therefore often is affected by missing val.
Minimize
Contributors:
The Pennsylvania State University CiteSeerX Archives
Year of Publication:
20090413
Source:
ftp://ftp.stat.unimuenchen.de/pub/sfb386/paper178.ps.Z
ftp://ftp.stat.unimuenchen.de/pub/sfb386/paper178.ps.Z
Minimize
Document Type:
text
Language:
en
Subjects:
regression ; simulation
regression ; simulation
Minimize
DDC:
310 Collections of general statistics
(computed)
Rights:
Metadata may be used without restrictions as long as the oai identifier remains attached to it.
Metadata may be used without restrictions as long as the oai identifier remains attached to it.
Minimize
URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.7973
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.7973
Minimize
Content Provider:
CiteSeerX
My Lists:
My Tags:
Notes:
Detail View
Email this
Export Record
Export Record
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Add to Favorites
Check in Google Scholar
Add to another List
Edit Favorit
Delete from Favorites
2.
The Classical Linear Regression Model with one Incomplete Binary Variable
Open Access
Title:
The Classical Linear Regression Model with one Incomplete Binary Variable
Author:
H. Toutenburg
;
T. Nittner
H. Toutenburg
;
T. Nittner
Minimize authors
Description:
We present three di erent methods based on the conditional mean imputation when binary explanatory variables are incomplete. Apart from the single imputation and multiple imputation especially the socalled pi imputation is presented as a new procedure. Seven procedures are compared in a simulation experiment when missing data are con ned to one...
We present three di erent methods based on the conditional mean imputation when binary explanatory variables are incomplete. Apart from the single imputation and multiple imputation especially the socalled pi imputation is presented as a new procedure. Seven procedures are compared in a simulation experiment when missing data are con ned to one independent binary variable: complete case analysis, zero order regression, categorical zero order regression, pi imputation, single imputation, multiple imputation, modi ed rst order regression. After a brief theoretical description of the simulation experiment, MSEratio, variance and bias are used to illustrate di erences within and between the approaches. Key words: binary variables � imputation � incomplete data � logistic regression � simulation experiment� 1
Minimize
Contributors:
The Pennsylvania State University CiteSeerX Archives
Year of Publication:
20080815
Source:
http://epub.ub.unimuenchen.de/1566/1/paper_178.pdf
http://epub.ub.unimuenchen.de/1566/1/paper_178.pdf
Minimize
Document Type:
text
Language:
en
Rights:
Metadata may be used without restrictions as long as the oai identifier remains attached to it.
Metadata may be used without restrictions as long as the oai identifier remains attached to it.
Minimize
URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.7922
http://epub.ub.unimuenchen.de/1566/1/paper_178.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.7922
http://epub.ub.unimuenchen.de/1566/1/paper_178.pdf
Minimize
Content Provider:
CiteSeerX
My Lists:
My Tags:
Notes:
Detail View
Email this
Export Record
Export Record
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Add to Favorites
Check in Google Scholar
Add to another List
Edit Favorit
Delete from Favorites
3.
The Additive Model with Missing Values in the Independent Variable  Theory and Simulation
Title:
The Additive Model with Missing Values in the Independent Variable  Theory and Simulation
Author:
Nittner, T.
Nittner, T.
Minimize authors
Description:
After a short introduction of the model, the missing mechanism and the method of inference some imputation procedures are introduced with special focus on the simulation experiment. Within this experiment, the simple additive model y = f(x) + e is assumed to have missing values in the independent variable according to MCAR. Besides the wellknow...
After a short introduction of the model, the missing mechanism and the method of inference some imputation procedures are introduced with special focus on the simulation experiment. Within this experiment, the simple additive model y = f(x) + e is assumed to have missing values in the independent variable according to MCAR. Besides the wellknown complete case analysis, mean imputation plus random noise, a single imputation and two ways of nearest neighbor imputation are used. These methods are compared within a simulation experiment based on the average mean square error, variances and biases of \hat{f}(x) at the knots.
Minimize
Year of Publication:
20020101
Document Type:
doctype:workingPaper ; Paper ; NonPeerReviewed
Subjects:
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Minimize
Relations:
http://epub.ub.unimuenchen.de/1653/1/paper_272.pdf ; Nittner, T. (2002): The Additive Model with Missing Values in the Independent Variable  Theory and Simulation. Sonderforschungsbereich 386, Discussion Paper 272
URL:
http://epub.ub.unimuenchen.de/1653/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub16532
http://epub.ub.unimuenchen.de/1653/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub16532
Minimize
Content Provider:
LudwigMaximiliansUniversity Munich: Open Access LMU
My Lists:
My Tags:
Notes:
Detail View
Email this
Export Record
Export Record
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Add to Favorites
Check in Google Scholar
Add to another List
Edit Favorit
Delete from Favorites
4.
Missing at Random (MAR) in Nonparametric Regression  A Simulation Experiment
Title:
Missing at Random (MAR) in Nonparametric Regression  A Simulation Experiment
Author:
Nittner, T.
Nittner, T.
Minimize authors
Description:
This paper considers an additive model y = f(x) + e when some observations on x are missing at random but corresponding observations on y are available. Especially for this model missing at random is an interesting case because of the fact that the complete case analysis is not expected to be suitable. A simulation study is reported and methods ...
This paper considers an additive model y = f(x) + e when some observations on x are missing at random but corresponding observations on y are available. Especially for this model missing at random is an interesting case because of the fact that the complete case analysis is not expected to be suitable. A simulation study is reported and methods are compared based on superiority measures as the sample mean squared error, sample variance and estimated sample bias. In detail, complete case analysis, zero order regression plus random noise, single imputation and nearest neighbor imputation are discussed.
Minimize
Year of Publication:
20020101
Document Type:
doctype:workingPaper ; Paper ; NonPeerReviewed
Subjects:
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Minimize
Relations:
http://epub.ub.unimuenchen.de/1662/1/paper_284.pdf ; Nittner, T. (2002): Missing at Random (MAR) in Nonparametric Regression  A Simulation Experiment. Sonderforschungsbereich 386, Discussion Paper 284
URL:
http://epub.ub.unimuenchen.de/1662/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub16621
http://epub.ub.unimuenchen.de/1662/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub16621
Minimize
Content Provider:
LudwigMaximiliansUniversity Munich: Open Access LMU
My Lists:
My Tags:
Notes:
Detail View
Email this
Export Record
Export Record
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Add to Favorites
Check in Google Scholar
Add to another List
Edit Favorit
Delete from Favorites
5.
The Classical Linear Regression Model with one Incomplete Binary Variable
Title:
The Classical Linear Regression Model with one Incomplete Binary Variable
Author:
Toutenburg, Helge
;
Nittner, T.
Toutenburg, Helge
;
Nittner, T.
Minimize authors
Description:
We present three different methods based on the conditional mean imputation when binary explanatory variables are incomplete. Apart from the single imputation and multiple imputation especially the socalled pi imputation is presented as a new procedure. Seven procedures are compared in a simulation experiment when missing data are confined to o...
We present three different methods based on the conditional mean imputation when binary explanatory variables are incomplete. Apart from the single imputation and multiple imputation especially the socalled pi imputation is presented as a new procedure. Seven procedures are compared in a simulation experiment when missing data are confined to one independent binary variable: complete case analysis, zero order regression, categorical zero order regression, pi imputation, single imputation, multiple imputation, modified first order regression. After a brief theoretical description of the simulation experiment, MSEratio, variance and bias are used to illustrate differences within and between the approaches.
Minimize
Year of Publication:
19990101
Document Type:
doctype:workingPaper ; Paper ; NonPeerReviewed
Subjects:
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Minimize
Relations:
http://epub.ub.unimuenchen.de/1566/1/paper_178.pdf ; Toutenburg, Helge und Nittner, T. (1999): The Classical Linear Regression Model with one Incomplete Binary Variable. Sonderforschungsbereich 386, Discussion Paper 178
URL:
http://epub.ub.unimuenchen.de/1566/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub15668
http://epub.ub.unimuenchen.de/1566/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub15668
Minimize
Content Provider:
LudwigMaximiliansUniversity Munich: Open Access LMU
My Lists:
My Tags:
Notes:
Detail View
Email this
Export Record
Export Record
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Add to Favorites
Check in Google Scholar
Add to another List
Edit Favorit
Delete from Favorites
6.
Estimating A Polynomial Regression With Measurement Errors In The Structural And In The Functional Case  A Comparison
Title:
Estimating A Polynomial Regression With Measurement Errors In The Structural And In The Functional Case  A Comparison
Author:
Schneeweiß, Hans
;
Nittner, T.
Schneeweiß, Hans
;
Nittner, T.
Minimize authors
Description:
Two methods of estimating the parameters of a polynomial regression with measurement errors in the regressor variable are compared to each other with respect to their relative efficiency and robustness. One of the two estimators (SLS) is valid for the structural variant of the model and uses the assumption that the true regressor variable is nor...
Two methods of estimating the parameters of a polynomial regression with measurement errors in the regressor variable are compared to each other with respect to their relative efficiency and robustness. One of the two estimators (SLS) is valid for the structural variant of the model and uses the assumption that the true regressor variable is normally distributed, while the other one (ALS and also its small sample modification MALS) does not need any assumption on the regressor distribution. SLS turns out to react rather strongly on violations of the normality assumption as far as its bias is concerned but is quite robust with respect to its MSE. It is more efficient than ALS or MALS whenever the normality assumption holds true.
Minimize
Year of Publication:
20000101
Document Type:
doctype:workingPaper ; Paper ; NonPeerReviewed
Subjects:
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Minimize
Relations:
http://epub.ub.unimuenchen.de/1587/1/paper_197.pdf ; Schneeweiß, Hans und Nittner, T. (2000): Estimating A Polynomial Regression With Measurement Errors In The Structural And In The Functional Case  A Comparison. Sonderforschungsbereich 386, Discussion Paper 197
URL:
http://epub.ub.unimuenchen.de/1587/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub15874
http://epub.ub.unimuenchen.de/1587/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub15874
Minimize
Content Provider:
LudwigMaximiliansUniversity Munich: Open Access LMU
My Lists:
My Tags:
Notes:
Detail View
Email this
Export Record
Export Record
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Add to Favorites
Check in Google Scholar
Add to another List
Edit Favorit
Delete from Favorites
7.
Identifying Missing Data Mechanisms in (2 x 2)Contingency Tables
Title:
Identifying Missing Data Mechanisms in (2 x 2)Contingency Tables
Author:
Nittner, T.
;
Toutenburg, Helge
Nittner, T.
;
Toutenburg, Helge
Minimize authors
Description:
Consider the sample of two binary variables X and Y with some missing structure within X or Y. The knowledge about the corresponding values of the observed covariate allows to play through all possible `originally' complete data sets. After defining the notation, including some theoretical work, a test for nonMCAR within the complete case tabl...
Consider the sample of two binary variables X and Y with some missing structure within X or Y. The knowledge about the corresponding values of the observed covariate allows to play through all possible `originally' complete data sets. After defining the notation, including some theoretical work, a test for nonMCAR within the complete case table is presented. Simulating all possible tables enables some testing on nonMAR. A simulation experiment is used to illustrate this context.
Minimize
Year of Publication:
20040101
Document Type:
doctype:workingPaper ; Paper ; NonPeerReviewed
Subjects:
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Minimize
Relations:
http://epub.ub.unimuenchen.de/1744/1/paper_373.pdf ; Nittner, T. und Toutenburg, Helge (2004): Identifying Missing Data Mechanisms in (2 x 2)Contingency Tables. Sonderforschungsbereich 386, Discussion Paper 373
URL:
http://epub.ub.unimuenchen.de/1744/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub17447
http://epub.ub.unimuenchen.de/1744/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub17447
Minimize
Content Provider:
LudwigMaximiliansUniversity Munich: Open Access LMU
My Lists:
My Tags:
Notes:
Detail View
Email this
Export Record
Export Record
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Add to Favorites
Check in Google Scholar
Add to another List
Edit Favorit
Delete from Favorites
8.
Statistische Methoden bei unvollständigen Daten
Title:
Statistische Methoden bei unvollständigen Daten
Author:
Toutenburg, Helge
;
Heumann, Christian
;
Nittner, T.
Toutenburg, Helge
;
Heumann, Christian
;
Nittner, T.
Minimize authors
Description:
Dieser Artikel gibt einen überblick über die Problematik fehlender Daten im Rahmen der statistischen Datenanalyse. Im Prinzip sollte er auch Lesern mit geringem mathematischen und statistischen Wissen dienlich sein und sie mathematisch nicht überfordern.Gegebenenfalls kann über allzu theoretische Komponenten hinweggelesen werden.
Dieser Artikel gibt einen überblick über die Problematik fehlender Daten im Rahmen der statistischen Datenanalyse. Im Prinzip sollte er auch Lesern mit geringem mathematischen und statistischen Wissen dienlich sein und sie mathematisch nicht überfordern.Gegebenenfalls kann über allzu theoretische Komponenten hinweggelesen werden.
Minimize
Year of Publication:
20040101
Document Type:
doctype:workingPaper ; Paper ; NonPeerReviewed
Subjects:
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Minimize
Relations:
http://epub.ub.unimuenchen.de/1750/1/paper_380.pdf ; Toutenburg, Helge und Heumann, Christian und Nittner, T. (2004): Statistische Methoden bei unvollständigen Daten. Sonderforschungsbereich 386, Discussion Paper 380
URL:
http://epub.ub.unimuenchen.de/1750/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub17500
http://epub.ub.unimuenchen.de/1750/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub17500
Minimize
Content Provider:
LudwigMaximiliansUniversity Munich: Open Access LMU
My Lists:
My Tags:
Notes:
Detail View
Email this
Export Record
Export Record
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Add to Favorites
Check in Google Scholar
Add to another List
Edit Favorit
Delete from Favorites
9.
Parametric and Nonparametric Regression with Missing X's  A Review
Title:
Parametric and Nonparametric Regression with Missing X's  A Review
Author:
Toutenburg, Helge
;
Heumann, Christian
;
Nittner, T.
;
Scheid, S.
Toutenburg, Helge
;
Heumann, Christian
;
Nittner, T.
;
Scheid, S.
Minimize authors
Description:
This paper gives a detailed overview of the problem of missing data in parametric and nonparametric regression. Theoretical basics, properties as well as simulation results may help the reader to get familiar with the common problem of incomplete data sets. Of course, not all occurences can be discussed so this paper could be seen as an introduc...
This paper gives a detailed overview of the problem of missing data in parametric and nonparametric regression. Theoretical basics, properties as well as simulation results may help the reader to get familiar with the common problem of incomplete data sets. Of course, not all occurences can be discussed so this paper could be seen as an introduction to missing data within regression analysis and as an extension to the early paper of Little (1992).
Minimize
Year of Publication:
20020101
Document Type:
doctype:workingPaper ; Paper ; NonPeerReviewed
Subjects:
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Sonderforschungsbereich 386 ; Sonderforschungsbereich 386 ; ddc:510
Minimize
Relations:
http://epub.ub.unimuenchen.de/1664/1/paper_286.pdf ; Toutenburg, Helge und Heumann, Christian und Nittner, T. und Scheid, S. (2002): Parametric and Nonparametric Regression with Missing X's  A Review. Sonderforschungsbereich 386, Discussion Paper 286
URL:
http://epub.ub.unimuenchen.de/1664/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub16642
http://epub.ub.unimuenchen.de/1664/
http://nbnresolving.de/urn/resolver.pl?urn=nbn:de:bvb:19epub16642
Minimize
Content Provider:
LudwigMaximiliansUniversity Munich: Open Access LMU
My Lists:
My Tags:
Notes:
Detail View
Email this
Export Record
Export Record
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Add to Favorites
Check in Google Scholar
Add to another List
Edit Favorit
Delete from Favorites
10.
An integrative genomics screen uncovers ncRNA TUCR functions in neuroblastoma tumours
Title:
An integrative genomics screen uncovers ncRNA TUCR functions in neuroblastoma tumours
Author:
Mestdagh, P.
;
Fredlund, Erik
;
Pattyn, F.
;
Rihani, A.
;
Van Maerken, T.
;
Vermeulen, J.
;
Kumps, C.
;
Menten, B.
;
De Preter, K.
;
Schramm, A.
;
...
Mestdagh, P.
;
Fredlund, Erik
;
Pattyn, F.
;
Rihani, A.
;
Van Maerken, T.
;
Vermeulen, J.
;
Kumps, C.
;
Menten, B.
;
De Preter, K.
;
Schramm, A.
;
Schulte, J.
;
Noguera, R.
;
Schleiermacher, G.
;
JanoueixLerosey, I.
;
Laureys, G.
;
Powel, R.
;
Nittner, D.
;
Marine, JC
;
Ringnér, Markus
;
Speleman, F.
;
Vandesompele, J.
Minimize authors
Description:
Different classes of noncoding RNAs, including microRNAs, have recently been implicated in the process of tumourigenesis. In this study, we examined the expression and putative functions of a novel class of noncoding RNAs known as transcribed ultraconserved regions (TUCRs) in neuroblastoma. Genomewide expression pro. ling revealed correlatio...
Different classes of noncoding RNAs, including microRNAs, have recently been implicated in the process of tumourigenesis. In this study, we examined the expression and putative functions of a novel class of noncoding RNAs known as transcribed ultraconserved regions (TUCRs) in neuroblastoma. Genomewide expression pro. ling revealed correlations between specific TUCR expression levels and important clinicogenetic parameters such as MYCN amplification status. A functional genomics approach based on the integration of multilevel transcriptome data was adapted to gain insights into TUCR functions. Assignments of TUCRs to cellular processes such as TP53 response, differentiation and proliferation were verified using various cellular model systems. For the first time, our results de. ne a TUCR expression landscape in neuroblastoma and suggest widespread TUCR involvement in diverse cellular processes that are deregulated in the process of tumourigenesis. Oncogene (2010) 29, 35833592; doi:10.1038/onc.2010.106; published online 12 April 2010
Minimize
Publisher:
Nature Publishing Group
Year of Publication:
2010
Document Type:
text
Language:
eng
Subjects:
neuroblastoma ; noncoding RNA ; TUCR ; Medicine and Health Sciences
neuroblastoma ; noncoding RNA ; TUCR ; Medicine and Health Sciences
Minimize
URL:
http://lup.lub.lu.se/record/1630286
http://lup.lub.lu.se/record/1630286
Minimize
Content Provider:
Lund University Publications (LUP)
My Lists:
My Tags:
Notes:
Detail View
Email this
Export Record
Export Record
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Add to Favorites
Check in Google Scholar
Add to another List
Edit Favorit
Delete from Favorites
Export Record
All Records
Export
» RefWorks
» EndNote
» RIS
» BibTeX
» MARC
» RDF
» RTF
» JSON
» YAML
Adjust your hit list
Sort Your Results
Refine Search Result
More Options
Sort Your Results
Sort by:
Relevance
Author, ZA
Author, AZ
Title, AZ
Title, ZA
Date of publication, descending
Date of publication, ascending
Refine Search Result
Author
(7) Nittner, T.
(4) Toutenburg, Helge
(2) H. Toutenburg
(2) Heumann, Christian
(2) T. Nittner
(2) The Pennsylvania State University CiteSeerX...
(1) De Preter, K.
(1) Fredlund, Erik
(1) JanoueixLerosey, I.
(1) Kumps, C.
(1) Laureys, G.
(1) Marine, JC
(1) Menten, B.
(1) Mestdagh, P.
(1) Mestdagh, P; JFA; CORA; Fredlund, E; Pattyn,...
(1) Nittner, D.
(1) Noguera, R.
(1) Pattyn, F.
(1) Powel, R.
(1) Rihani, A.
(1) Ringnér, Markus
(1) Scheid, S.
(1) Schleiermacher, G.
(1) Schneeweiß, Hans
(1) Schramm, A.
(1) Schulte, J.
(1) Speleman, F.
(1) Van Maerken, T.
(1) Vandesompele, J.
(1) Vermeulen, J.
Author:
Subject
(7) ddc 510
(7) sonderforschungsbereich 386
(2) neuroblastoma
(1) cell line
(1) conserved sequence
(1) gene expression profiling
(1) gene expression regulation
(1) genetic
(1) genomics
(1) histones
(1) humans
(1) medicine and health sciences
(1) messenger
(1) neoplasm
(1) neoplastic
(1) non coding rna
(1) prognosis
(1) regression
(1) reproducibility of results
(1) rna
(1) simulation
(1) t ucr
(1) transcription
(1) tumor
(1) untranslated
Subject:
Year of Publication
(3) 2002
(2) 2004
(2) 2010
(1) 1999
(1) 2000
(1) 2008
(1) 2009
Year of Publication:
Content Provider
(7) Munich LMU: Open Access
(2) CiteSeerX
(1) Lund Univ. Publications (LUP)
(1) Leuven KU: Lirias
Content Provider:
Language
(7) Unknown
(4) English
Language:
Document Type
(7) Reports, Papers, Lectures
(3) Text
(1) Article, Journals
Document Type:
Access
(9) Unknown
(2) Open Access
Access:
More Options
»
Search History
»
Get RSS Feed
»
Get ATOM Feed
»
Email this Search
»
Save Search
»
Browsing
»
Search Plugin
Further result pages
Results:
1

2
Next »
New Search »
Currently in BASE: 72,045,933 Documents of 3,464
Content Sources
About BASE

Contact

BASE Lab

Imprint
© 20042015 by
Bielefeld University Library
Search powered by
Solr
&
VuFind
.
Suggest Repository
BASE Interfaces
Currently in BASE: 72,045,933 Documents of 3,464 Content Sources
http://www.basesearch.net